Mohamed Aqalmoun

Réduction des endomorphismes

Module M17

ENS-FES

ENS-Fès Mohamed Aqalmoun

Table des matières

1	Éléı	nents propres et polynômes d'endomorphismes	!
	1.1	Sous espaces stables	
	1.2	Polynômes d'endomorphismes	•
	1.3	Polynôme minimal	1
	1.4	Décomposition des noyaux	9
	1.5	Éléments propres d'un endomorphisme, d'une matrice carrée 1	1
	1.6	Polynôme caractéristique d'un endomorphisme, d'une matrice 1	1
	1.7	Theorème de Cayley-Hamilton	1
	1.8	Sous espaces caractéristiques	1

ENS-Fès

Mohamed Aqalmoun

Chapitre 1

Éléments propres et polynômes d'endomorphismes

1.1 Sous espaces stables

Définition 1.1.

Soit E un espace vectoriel, $u \in \mathcal{L}(E)$ et F un sous espace vectoriel de E.

- 1. On dit que F est stable par u si $u(F) \subseteq F$ i.e pour tout $x \in F$, $u(x) \in F$.
- 2. Si F est stable par u, on appelle endomorphisme induit par u sur F, l'endomorphisme de F noté u_F qui à tout x associe u(x).

Exemples:

Proposition 1.2.

Soient $E_1, ..., E_r$ des sous-espaces vectoriels de E et u un endomorphisme de E.

 $Si E_1, ..., E_r$ sont stables par u, alors:

- 1. Le sous espace vectoriel $\bigcap_{i=1}^{r} E_i$ est stable par u.
- 2. Le sous espace vectoriel $\sum_{i=1}^{\infty} E_i$ est stable par u. En particulier, si les sous espaces vectoriels sont en somme directe, le sous espace vecto-

 $riel \bigoplus_{i=1}^{r} E_i$ est stable par u.

Démonstration:

1.

2.

Théorème 1.3.

Soit E un espace vectoriel et $u, v \in \mathcal{L}(E)$. Si u et v commutent, alors $\operatorname{Im} v$ et $\ker v$ sont stables par u.

Démonstration:

Remarque : Soit $u \in \mathcal{L}(E)$. Puisque u commute avec lui même, les sous espaces vectoriels $\ker u$ et $\operatorname{Im} u$ sont stables par u.

Proposition 1.4.

Soit E un espace vectoriel et $u \in \mathcal{L}(E)$. Soit F un sous espace vectoriel de E et (e_1, \ldots, e_p) une famille génératrice de F. Les propriétés suivantes sont équivalentes :

- 1. F est stable par u,
- 2. Pour tout $1 \le i \le p$, $u(e_i) \in F$.

Démonstration: ...

Proposition 1.5.

Soient E un espace vectoriel de dimension n, F un sous-espace vectoriel de E de dimension p et u un endomorphisme de E. Alors F est stable par u si, et seulement si, la matrice de u dans toute base adaptée à F est de la

$$forme\begin{pmatrix}A & B\\ 0 & D\end{pmatrix}o\grave{u}\;A\in\mathcal{M}_p(\mathbb{K}).$$

Démonstration:

Remarque : La matrice A représente la matrice de l'endomorphisme u_F dans la base $(e_1, ..., e_p)$.

ENS-Fès

Mohamed Agalmoun

1.2 Polynômes d'endomorphismes

Soit E un espace vectoriel et u un endomorphisme de E. On note

$$\begin{cases} u^0 &= \operatorname{Id}_E \\ u^n &= \underbrace{u \circ \dots \circ u}_{n \text{ fois}} \text{ si } n \ge 1 \end{cases}$$

Ainsi pour $n \ge 1$, $u^n = u^{n-1} \circ u = u \circ u^{n-1}$.

Définition 2.1.

Soit $u \in \mathcal{L}(E)$ et $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{K}[X]$. L'endomorphisme P(u) est défini par;

$$P(u) := \sum_{k=0}^{n} a_k u^k = a_0 \text{Id}_E + a_1 u + ... + a_n u^n$$

Remarque: Si P = c est un polynôme contant, alors $P(u) = c \operatorname{Id}_E$.

Proposition 2.2.

Soit $u \in \mathcal{L}(E)$. L'application $\varphi : \mathbb{K}[X] \to \mathcal{L}(E)$ définie par $\varphi(P) = P(u)$ est un morphisme d'algèbres c'est-à-dire linéaire, $\varphi(PQ) = P(u) \circ Q(u)$ et $\varphi(1) = \operatorname{Id}_E$.

Démonstration:

Version matricielle : Soit $M \in \mathcal{M}_n(\mathbb{K})$ et $P = \sum_{k=0}^m a_k X^k \in \mathbb{K}[X]$. On note par P(M) la matrice

$$P(M) := \sum_{k=0}^{m} a_k M^k = a_0 I_p + a_1 M + \dots + a_m M^m$$

L'application $\Psi: \mathbb{K}[X] \to \mathcal{M}_n(\mathbb{K})$ définie par $\Psi(P) = P(M)$ est un morphisme d'algèbres c'est-à-dire linéaire, $\Psi(PQ) = \Psi(P)\Psi(Q)$ et $\Psi(1) = I_n$.

Définition 2.3.

Soit $P \in \mathbb{K}[X]$.

- 1. Soit $u \in \mathcal{L}(E)$. On dit que P est un polynôme annulateur de u si P(u) = 0.
- 2. Soit $M \in \mathcal{M}_n(\mathbb{K})$. On dit que P est un polynôme annulateur de M si P(M) = 0.

Exemple: Si u est un projecteur de E,.....

Proposition 2.4.

Soit E un espace vectoriel de dimension finie, $\mathscr B$ une base de E et $u \in \mathscr L(E)$, notons $M = \mathscr M_{\mathscr B}(u)$. Pour tout polynôme $P \in \mathbb K[X]$, on a

$$\mathcal{M}_{\mathcal{B}}(P(u)) = P(M)$$

Ainsi, un polynôme P est annulateur de u si, et seulement si, P est annulateur de M.

Démonstration:

1.3 Polynôme minimal

Théorème et définition 3.1.

Soit E un espace vectoriel de dimension n. Soit $u \in \mathcal{L}(E)$ (respectivement $M \in \mathcal{M}_n(\mathbb{K})$). Il existe un unique polynôme annulateur de u (respectivement de M) de degré minimum et unitaire appelé polynôme minimal de u (respectivement de M). On le note π_u (respectivement π_M).

Démonstration:

Exemple:

- 1. $\pi_{I_n} = X 1$.
- 2. Soit $M = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Proposition 3.2.

Soit E un espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Si P est un polynôme annulateur de u, alors π_u divise P.

Démonstration:

Remarque: On a la version matricielle suivante : Si P est un polynôme annulateur d'une matrice $M \in \mathcal{M}_n(\mathbb{K})$, alors π_M divise P.

Théorème 3.3.

Soit E un espace vectoriel de dimension n, $\mathscr B$ une base de E et $u \in \mathscr L(E)$. Soit $A = \mathscr M_{\mathscr B}(u)$ la matrice de u dans la base $\mathscr B$. Alors $\pi_u = \pi_A$. Démonstration:

1.4 Décomposition des noyaux

Théorème 4.1. (Lemme des noyaux)

Soit $u \in \mathcal{L}(E)$ et $P, Q \in \mathbb{K}[X]$ tels que $P \wedge Q = 1$. Alors

$$\ker((PQ)(u)) = \ker(P(u)) \bigoplus \ker(Q(u)).$$

De plus, la projection de ker((PQ)(u)) sur ker(P(u)) et parallèlement au ker(Q(u)) est un polynôme en u.

Démonstration:

Corollaire 4.2. (Lemme des noyaux généralisé)

Soit $u \in \mathcal{L}(E)$ et $P_1, ..., P_r$ des polynômes de $\mathbb{K}[X]$ deux à deux premiers entre eux et $P = P_1 ... P_r$. Alors

$$\ker(P(u)) = \bigoplus_{i=1}^r \ker(P_i(u)).$$

De plus, la projection de $\ker(P(u))$ sur $\ker(P_j(u))$ et parallèlement à la somme $\bigoplus_{i=1,i\neq j}^r \ker(P_i(u))$ est un polynôme en u.

Démonstration : Par récurrence sur *r*.

Exemple: Soit *E* un espace vectoriel et *s* une symétrie de *E*......

Remarque : Un cas particulier : Si $\lambda_1, ..., \lambda_r \in \mathbb{K}$ sont deux à deux distincts et $P = \prod_{i=1}^r (X - \lambda_i)$, alors

$$\ker P(u) = \bigoplus_{i=1}^r \ker(u - \lambda_i \mathrm{Id}_E)$$

Corollaire 4.3.

Soit $u \in \mathcal{L}(E)$ et $P_1, ..., P_r$ des polynômes de $\mathbb{K}[X]$ deux à deux premiers entre eux et $P = P_1 ... P_r$. Si P est un polynôme annulateur de u, alors

$$E = \bigoplus_{i=1}^r \ker(P_i(u)).$$

Démonstration : Il suffit de remarquer que ker(P(u)) = E.

1.5 Éléments propres d'un endomorphisme, d'une matrice carrée

Définition 5.1.

Soit $u \in \mathcal{L}(E)$ et $\lambda \in \mathbb{K}$.

- 1. On dit que λ est une valeur propre de u, s'il existe un vecteur non nul x de E tel que $u(x) = \lambda x$.
- 2. Si λ est une valeur propre de u, tout vecteur $x \in E \setminus \{0\}$ tel que $u(x) = \lambda x$ est appelé vecteur propre associé à la valeur propre λ .
- 3. L'ensemble des valeurs propres de u est appelé le spectre de u et se note sp(u) ou spec(u).

Exemple: Soit *u* l'endomorphisme de \mathbb{R}^2 défini par u(x, y) = (x + y, x + y). On a . .

Proposition 5.2.

Soit $u \in \mathcal{L}(E)$ *et* $\lambda \in \mathbb{K}$. *Les assertions suivantes sont équivalentes :*

- 1. λ est une valeur propre de u,
- 2. L'endomorphisme $u \lambda \operatorname{Id}_E$ n'est pas injectif.
- 3. $\ker(u \lambda \operatorname{Id}_E) \neq \{0\}.$

Si de plus E est de dimension finie, les assertions précédentes sont équivalentes à $u - \lambda \operatorname{Id}_E$ n'est pas un isomorphisme.

Démonstration:

Définition 5.3. (Sous espace propre)

Soit $u \in \mathcal{L}(E)$ et λ une valeur propre de u. Le sous espace propre associé à la valeur propre λ est le sous espace vectoriel noté $E_{\lambda}(u)$, défini par

$$E_{\lambda}(u) := \ker(u - \lambda \operatorname{Id}_E) = \{x \in E \ / \ u(x) = \lambda x\}.$$

Exemple : On considère l'endomorphisme de \mathbb{R}^2 défini apr f(x,y)=(x+y,x+y). On a $2 \in \operatorname{sp}(u)$, et $E_2(u)=\{(x,y)\in\mathbb{R}^2/u(x,y)=2(x,y)\}=\{(x,y)\in\mathbb{R}^2/x=y\}=\operatorname{Vect}((1,1))$

10

Remarques : Si λ est une valeur propre de u, alors :

- 1. Le sous espace propre $E_{\lambda}(u)$ est formé de tous les vecteurs propres associés à la valeur propre λ et du vecteur nul.
- 2. $\dim(E_{\lambda}(u)) \ge 1$, en d'autres termes $E_{\lambda}(u)$ est un sous espace vectoriel non nul.
- 3. Le vecteur nul n'est jamais un vecteur propre (c'est par définition).

Théorème 5.4. (Somme de sous espaces propres)

Soit $u \in \mathcal{L}(u)$, soient $\lambda_1, ..., \lambda_r$ des valeurs propres deux à deux distinctes de u $(r \ge 2)$. Alors les sous espaces propres $E_{\lambda_1}(u), ..., E_{\lambda_r}(u)$ sont en somme directe c'est-à-dire

$$\sum_{i=1}^r E_{\lambda_i}(u) = \bigoplus_{i=1}^r E_{\lambda_r}(u)$$

Démonstration:

Remarque: Un cas particulier (r = 2): Si λ et μ sont deux valeurs propres distinctes de u, alors

$$E_{\lambda}(u)\cap E_{\mu}(u)=\{0\}$$

Corollaire 5.5.

Soit $u \in \mathcal{L}(E)$. Si $e_1, ..., e_r$ sont des vecteurs propres de u associés à des valeurs propres deux à deux distinctes, alors la famille $(e_1, ..., e_r)$ est libre.

Démonstration:

Corollaire 5.6.

Soit E un espace vectoriel de dimension finie n et u un endomorphisme de E. L'endomorphisme u admet au plus n valeurs propres deux à deux distinctes.

Démonstration:

Éléments propres d'une matrice carrée :

Définition 5.7.

Soit $M \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$.

1. On dit que λ est une valeur propre de M, s'il existe un $\underbrace{vecteur\ colonne\ non\ nul}_{}X\in\mathcal{M}_{n,1}(\mathbb{K})\ tel\ que\ MX=\lambda X.$

- 2. Si λ est une valeur propre de M, tout vecteur $X \in \mathcal{M}_{n,1}(\mathbb{K}) \setminus \{0\}$ tel que $MX = \lambda X$ est appelé vecteur propre associé à la valeur propre λ .
- 3. L'ensemble des valeurs propres de M est appelé le spectre de M et se note $\operatorname{sp}(M)$ ou $\operatorname{spec}(M)$.
- 4. Soit λ une valeur propre de M, le sous espace propre associé à la valeur propre λ , noté $E_{\lambda}(M)$ est le sous espace vectoriel $E_{\lambda}(M) = \ker(M \lambda I_n) = \{X \in \mathcal{M}_{n,1}(\mathbb{K}) \mid MX = \lambda X\}.$

Proposition 5.8.

Soit $M \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$. Les propriétés suivantes sont équivalentes :

- 1. λ est une valeur propre de M,
- 2. $A \lambda I_n$ n'est pas inversible,
- 3. $det(M \lambda I_n) = 0$.

Démonstration:

Remarque : La proposition précédente, donne une méthode pratique pour trouver les valeurs propres d'une matrice, a savoir ; λ est une valeur propre de M si, et seulement si, λ est une solution de l'équation $\det(M - \lambda I_n) = 0$.

Le théorème suivant donne un lien entre les éléments propres d'un endomorphisme et ceux de sa matrice dans une base fixée.

Théorème 5.9.

Soit E un espace vectoriel de dimension finie et \mathcal{B} une base de E. Soient $u \in \mathcal{L}(E)$ et $M = \mathcal{M}_{\mathcal{B}}(u)$. Alors

- 1. Sp(u) = Sp(M).
- 2. Soit $\lambda \in \operatorname{Sp}(u) (= \operatorname{Sp}(M))$, $x \in E$ et $X = \mathcal{M}_{\mathscr{B}}(x)$. Alors x est un vecteur propre de u associé à la valeur propre λ si, et seulement si, X est un vecteur propre de M associé à la même valeur propre λ .

Démonstration:

Proposition 5.10.

Soit E un espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Soit $\lambda \in \operatorname{sp}(u)$, $x \in E_{\lambda}(u)$ et $P \in \mathbb{K}[X]$. Alors $P(u)(x) = P(\lambda)x$, en particulier $P(\lambda)$ est une valeur propre de P(u).

12

CHAPITRE 1 : Éléments propres et polynômes d'endomorphismes

Démonstration:

Remarque : La version matricielle du résultat précédent ; si $M \in \mathcal{M}_n(\mathbb{K})$, X un vecteur propre de M associé à la valeur propre λ et $P \in \mathbb{K}[X]$. Alors $P(M)X = P(\lambda)X$.

Corollaire 5.11.

Soit E un espace vectoriel, $u \in \mathcal{L}(E)$ et $P \in \mathbb{K}[X]$. Si P est un polynôme annulateur de u, alors toute valeur propre de u est une racine de P. En d'autres termes

 $sp(u) \subseteq \{ les racines de P \}$

Démonstration:

Remarque : Si P est un polynôme annulateur de u, il se peut que l'une des racines de P ne soit pas une valeur propre de u, comme le montre l'exemple suivant : $u = \operatorname{Id}_E$ et P = X(X-1). Clairement P est annulateur de u. Mais 0 est une racine de P qui n'est pas une valeur propre de u.

Corollaire 5.12.

Soit E un espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$ un endomorphisme nilpotent. Alors $\operatorname{sp}(u) = \{0\}$.

Démonstration:

1.6 Polynôme caractéristique d'un endomorphisme, d'une matrice

Définition 6.1.

Soit $M \in \mathcal{M}_n(\mathbb{K})$. Le polynôme caractéristique de M est le polynôme noté χ_M à coefficients dans \mathbb{K} défini par : $\chi_M(X) := \det(M - XI_n)$.

Exemples:

- 1. Le polynôme caractéristique de l'identité:.....
- 2. Soit *M* la matrice $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{K})$.

Définition 6.2.

Soit E un espace vectoriel de dimension n et $u \in \mathcal{L}(E)$. Le polynôme caractéristique de u noté χ_u est le polynôme caractéristique des d'une de ses matrices dans une base de E (ce polynôme ne dépend pas du choix de cette base). Ainsi, si M est la matrice de u dans une base \mathcal{B} de E, on a par définition $\chi_u = \chi_M$.

Remarque: (Pour la justification de la définition précédente)

Soit E un espace vectoriel de dimension n, $u \in \mathcal{L}(E)$, \mathscr{B} et \mathscr{B}' deux bases de E. Notons M (respectivement M') la matrice de u dans la base \mathscr{B} (respectivement \mathscr{B}'). Par la formule de changement de bases, il existe une matrice inversible $P \in \mathcal{M}_n(\mathbb{K})$ tel que

$$M = PM'P^{-1}$$

On vérifie facilement que $M - XI_n = P(M' - XI_n)P^{-1}$, on a donc

$$\chi_M = \det(M - XI_n) = \det(P(M' - XI_n)P^{-1}) = \det(M' - XI_n) = \chi_{M'}$$

Ce qui donne la consistance à la définition précédente.

Proposition 6.3.

Soit $M \in \mathcal{M}_n(\mathbb{K})$.

- 1. χ_M est un polynôme de degré n et de coefficient dominant $(-1)^n$.
- 2. Le coefficient de X^{n-1} de χ_M est $(-1)^{n-1}$ tr(M).
- 3. Le terme constant est det(M)

Remarque : On peut résumer la proposition précédente dans la formule suivante : Pour toute matrice $M \in \mathcal{M}_n(\mathbb{K})$ on a :

$$\gamma_M(X) = (-1)^n X^n + (-1)^{n-1} \operatorname{tr}(M) X^{n-1} + \dots + \operatorname{det}(M)$$

Théorème 6.4.

- 1. Soit $M \in \mathcal{M}_n(\mathbb{K})$. Les valeurs propres de M sont les racines de χ_M dans \mathbb{K} .
- 2. Soit E un espace vectoriel de dimension n et $u \in \mathcal{L}(E)$. Les valeurs propres de u sont les racines de χ_u dans \mathbb{K} .

Démonstration:

Remarque: (Cas d'une matrice triangulaire):

Proposition 6.5.

- 1. Soit $M \in \mathcal{M}_n(\mathbb{K})$. Alors M possède au plus n valeurs propres deux à deux distinctes.
- 2. Soit $u \in \mathcal{L}(E)$ où E est un espace vectoriel de dimension n. Alors u possède au plus n valeurs propres deux à deux distinctes.

Démonstration:

Proposition 6.6.

Soit E un espace vectoriel de dimension finie, $u \in \mathcal{L}(E)$ et F un sous espace vectoriel de E stable par u.

- 1. χ_{u_F} divise χ_u .
- 2. Si G est un supplémentaire de F dans E (i.e $E = F \oplus G$) et stable par u, alors $\chi_u = \chi_{u_F} \chi_{u_G}$.

Démonstration:

Définition 6.7.

On appelle ordre de multiplicité d'une valeur propre λ (d'un endomorphisme ou matrice), et on note m_{λ} , son ordre de multiplicité en tant que racine du polynôme caractéristique.

Remarque: Par définition de m_{λ} , on a $m_{\lambda} = \max\{k \in \mathbb{N} | (X - \lambda)^k \text{ divise } \chi_u\}$. Ainsi, un entier $k \leq m_{\lambda}$ si, et seulement si, $(X - \lambda)^k$ divise χ_u .

Théorème 6.8.

Soit E un espace vectoriel de dimension n et $u \in \mathcal{L}(E)$. Soit λ une valeur propre de u et m_{λ} son ordre de multiplicité. Alors

 $1 \le \dim(E_{\lambda}(u)) \le m_{\lambda}$

Démonstration:

1.7 Theorème de Cayley-Hamilton

Théorème 7.1. (Théorème de Cayley-Hamilton)

- 1. Soit E un espace vectoriel de dimension n et $u \in \mathcal{L}(E)$. Alors $\chi_u(u) = 0$.
- 2. Soit $M \in \mathcal{M}_n(\mathbb{K})$. Alors $\chi_M(M) = 0$

En d'autres termes, le polynôme caractéristique de u (respectivement de M) annule u (respectivement M).

Démonstration:

Corollaire 7.2.

- 1. Soit E un espace vectoriel de dimension n et $u \in \mathcal{L}(E)$. Alors π_u divise χ_u .
- 2. Soit $M \in \mathcal{M}_n(\mathbb{K})$. Alors π_M divise χ_M .

Démonstration:

Exemple: Soit $A \in \mathcal{M}_2(\mathbb{K})$ une matrice carrée d'ordre 2. On sait que

Proposition 7.3.

Soit E un espace vectoriel de dimension finie, $u \in \mathcal{L}(E)$ et $\lambda \in \mathbb{K}$. Alors λ est une valeur propre de u si, et seulement si, λ est une racine de π_u . En d'autres termes, les valeurs propres de u sont les racines du polynômes minimal π_u .

Démonstration:

1.8 Sous espaces caractéristiques

Définition 8.1.

Soit E un espace vectoriel de dimension n, $u \in \mathcal{L}(E)$ et λ une valeur propre de u de multiplicité m_{λ} . On appelle sous espace caractéristique de u associé à la valeur propre λ qu'on note $N_{\lambda}(u)$, le sous espace vectoriel

$$N_{\lambda}(u) := \ker((u - \lambda \operatorname{Id}_E)^{m_{\lambda}})$$

Remarques:

1. $N_{\lambda}(u)$ est stable par u car les deux endomorphismes u et $(u - \lambda \operatorname{Id}_E)^{m_{\lambda}}$ commutent.

16

ENS-Fès

Mohamed Agalmoun

CHAPITRE 1 : Éléments propres et polynômes d'endomorphismes

2. $E_{\lambda}(u) \subseteq N_{\lambda}(u)$.

Le lemme des noyaux donne le corollaire suivant :

Corollaire 8.2.

Les sous espaces caractéristiques associés à des valeurs propres deux à deux distinctes sont en somme directe.

Démonstration:

En combinant le lemme des noyaux avec le théorème de Cayley-Hamilton, on obtient le corollaire suivant :

Corollaire 8.3.

Soit E un espace vectoriel de dimension n et $u \in \mathcal{L}(E)$. Si le polynôme caractéristique de u est scindé, alors

$$E = \bigoplus_{\lambda \in \mathrm{Sp}(u)} N_{\lambda}(u)$$

De plus la projection de E sur chaque sous espace caractéristique $N_{\lambda}(u)$ et parallèlement au autres sous espaces caractéristiques est un polynôme en u.

Démonstration : Immédiate.

Théorème 8.4. (poly. cara. d'un endo. nilpotent)

Soit E un \mathbb{K} espace vectoriel de dimension n et $u \in \mathcal{L}(E)$ un endomorphisme nilpotent. Alors

$$\chi_u = (-1)^n X^n$$

Démonstration : Montrons le résultat par récurrence sur dim $E = n \ge 1$ La propriété est ainsi prouvée par récurrence.

Théorème 8.5.

Soit E un espace vectoriel de dimension n et $u \in \mathcal{L}(E)$. Soit λ une valeur propre de u.

- 1. $\dim(N_{\lambda}(u)) = m_{\lambda}$.
- 2. Soit u_{λ} l'endomorphisme induit par u dans $N_{\lambda}(u)$. Alors

$$\chi_{u_\lambda} = (-1)^{m_\lambda} (X - \lambda)^{m_\lambda}$$

Démonstration: